From 1 - 3 / 3
  • CAWCR Hindcast* and ECMWF ERA-5** model predictions of wave spectral properties (wave height and period) and corresponding observed data from ACE. Observations are mapped to model grids. Quality control is applied, i.e. cells with a number of points less than 5 and/or with high data variation (Standard Deviation/Mean greater than 0.2) are eliminated. Files are named as follows: WaMoS_vs_CAWCR_Hs.mat WaMoS_vs_CAWCR_Tm.mat WaMoS_vs_ERA5_Hs.mat WaMoS_vs_ERA5_Tp.mat In each file, columns show Latitude (deg.), Longitude (deg.), Time (number of days from January 0, 0000), Model Parameters (Hs, Tp or Tm) and Observed Parameters (Hs, Tp or Tm), respectively. Hs denotes significant wave height in meters, Tp is peak wave period in seconds and Tm is mean wave period based on the first moment of wave spectrum in seconds. The MATLAB file, WaMoSvsModel_FigurePlot.m, can be used to visualise the results. The files dscatter.m and polyfix.m are functions used in the MATLAB script. A sample figure (SampleFigure.png) is also included for users’ reference. * Durrant, T., Greenslade, D., Hemer, M. and Trenham, C., 2014. A global wave hindcast focussed on the Central and South Pacific (Vol. 40, No. 9, pp. 1917-1941). ** Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS), Dec. 12, 2018.

  • This dataset contains numerical simulation results of the wave fields in the Davis Sea from end of December 2019 to start of February 2020. Hindcasts were obtained through the third-generation spectral wave model WAVEWATCH-III (hereafter WW3). A high resolution Davis Sea regional grid (resolution 0.1 degree, 60-80E longitude, 70-60S latitude) was nested into global grid domain (resolution 0.5 degree, 80S-80N latitude). The global model is forced with 0.5 degree sea ice concentration and 10m-wind fields from ECMWF's ERA5 reanalysis. The Davis sea model is forced with 0.1 degree 10m-wind fields from ECMWF's archived forecasts, and high-resolution (3.125km) AMSR2 satellite data for sea ice concentration (Beitsch et al., 2013 updated). Ice-induced wave attenuation is parameterized following Sutherland et al. (2019, doi:10.1016/j.apor.2019.03.023) whilst the break-up of sea ice is parameterized as 'broken' or 'unbroken' based on the break-up parameter of Voermans et al.(2020, doi:10.5194/tc-14-4265-2020). The numerical simulations have been calibrated using the buoy-observations of Voermans (2022, dataset, doi:10.26179/cdmx-n995). Sensitivity of the simulations to sea ice properties was tested and all results are provided in the dataset. The data tree: * global: model outputs for the global domain - ncfield: gridded wave and ice data for this domain in netCDF-4 format - nests: binary data used by WW3 for boundary conditions for the Davis Sea grid - restarts: binary data used by WW3 for restarting this domain * davis_sea: model outputs for the Davis Sea domain - ncfield: gridded wave and ice data for this domain in netCDF-4 format - ncpoint: spectral wave data for a few points in the Davis Sea in netCDF-4 format - nctrack: spectral wave data following the wave buoys of Voermans et al (2022) in the Davis Sea in netCDF-4 format - restarts: binary data used by WW3 for restarting this domain - IHOT: binary text field of broken and unbroken ice for restarting this domain File naming convention (by example): ww3.20200101_20200103_M3D_IHOT_H0P0325_A0P01_YY9P0_SS0P1_HH0P55.nc * 20200101_20200103 identifies the datespan of the simulation in YYYYMMDD format * A0P01 refers to the attenuation coefficient of the model (where P stands for 'point'), in this case, A=0.01 * YY is the Young's Modulus timed 10^9, here, Y-9.0e9 Pa * SS is the ice strength 'sigma' times 10^6, here sigma=0.1e6 * HH is the ice thickness, here h=0.55 m * H0P0325 is proportional to the epsilon calibration coefficient (H=0.5*ice_thickness*epsilon). * M3D refers to the 3rd instantiation of the model * IHOT refers to hot start using the ice breakup field from the previous week. ww3.*_M3D_IHOT_H0P065_A0P05_YY6P0_SS0P55.nc is considered the baseline file (note, this simulation only covers the first two weeks of the study period). Reference: Beitsch, A., Kaleschke, L. and Kern, S. (2013). "AMSR2 ASI 3.125 km Sea Ice Concentration Data, V0.1", Institute of Oceanography, University of Hamburg, Germany, digital media

  • The data are from our Nature Article from June 2018: "Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell". The abstract is: "Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (the collapse of the Larsen A and B and Wilkins ice shelves), the increased seasonal absence of a protective sea ice buffer enabled increased flexure of vulnerable outer ice shelf margins by ocean swells that probably weakened them to the point of calving. This outer-margin calving triggered wider-scale disintegration of ice shelves compromised by multiple factors in preceding years, with key prerequisites being extensive flooding and outer-margin fracturing. Wave-induced flexure is particularly effective in outermost ice shelf regions thinned by bottom crevassing. Our analysis of satellite and ocean-wave data and modelling of combined ice shelf, sea ice and wave properties highlights the need for ice sheet models to account for sea ice and ocean waves." Details of the analyses and data used, and the data generated by this study, are given in the paper: https://www.nature.com/articles/s41586-018-0212-1. Code availability: Analytical scripts used in this study are freely available from the authors via the corresponding author upon reasonable request. Data availability: The datasets and products generated during the current study are available from the corresponding author on reasonable request. The datasets forming the basis of the study are available as follows: (1) Sea ice: Daily estimates of satellite-derived sea ice concentration (gridded at a spatial resolution of 25 x 25 km) derived by the NASA Bootstrap algorithm for the period 1979-2010 were obtained from the US National Snow and Ice Data Center (NSIDC) dataset at: http://nsidc.org/data/NSIDC-0079. Accessed August 2015. (2) Waves: Ocean wave-field data were obtained from the CAWCR (Collaboration for Australian Weather and Climate Research) Wave Hindcast 1979–2010 dataset run on a 0.4 x 0.4° global grid: https://doi.org/10.4225/08/523168703DCC5. Accessed September 2017. (3) Satellite visible and thermal infrared imagery of ice shelves and disintegration events: The NOAA AVHRR image of the Larsen1995 disintegration used in Figure 2 was obtained from the British Antarctic Survey: http://www.nerc-bas.ac.uk/icd/bas_publ.html. Accessed June 2015. MODIS visible and 839 thermal infrared imagery from the US NSIDC archive at: http://nsidc.org/data/iceshelves_images/. Accessed June 2012. The study involved 2 model components, and model output is described below. The 2 models are: (i) a model of ocean swell attenuation by sea ice; and (ii) an ice shelf-ocean wave interaction model. Descriptions of both are given in the Nature paper (Methods section). DESCRIPTIONS OF THE 13 INDIVIDUAL DATA FILES PROVIDED (NB DESCRIPTIONS OF DATASETS GENERATED RELATIVE TO THE FIGURES) ARE GIVEN IN THE FILES: (1) Source data for Figures 4 (parts a-d), 5 and 6a are given in Excel spreadsheet files "Source-Data_2017-07-09041A_Figure.....xlsx". (2) Source data for Extended Data Figures 1 (parts a-b), 3 (parts b,d and parts a,c), 4 (parts b,d and a,c) and 6 are given in Excel spreadsheet files "Source-Data_2017-07-09041A_EDFig.....xlsx".